Slide 1

IBD and Colon Cancer Surveillance

Samir A. Shah, MD, FACG, FASGE, AGAF
Clinical Associate Professor of Medicine, Brown University
Chief of Gastroenterology, The Miriam Hospital
Gastroenterology Associates, Inc
44 West River Street, Providence RI 02904
401-274-4800
samir@brown.edu

Disclosures:
Speaker’s Bureau: Abbott, Janssen, Santarus
Research: CDC/NIH/CCFA
OSCCAR

Thx: Francis Farraye, MD

IBD and Colon Cancer Surveillance
Samir A. Shah, MD, FACG, FASGE, AGAF
Clinical Associate Professor of Medicine, Brown University
Chief of Gastroenterology, The Miriam Hospital
Gastroenterology Associates, Inc
44 West River Street, Providence RI 02904
401-274-4800
samir@brown.edu

Disclosures:
Speaker’s Bureau: Abbott, Janssen, Santarus
Research: CDC/NIH/CCFA
OSCCAR

Thx: Francis Farraye, MD

Slide 2

Goals
- Increased risk of colon cancer in IBD
- Importance of surveillance/technique
- Consider Chromoendoscopy
- Suggested Guidelines (evolving)
- Confirmed dysplasia = colectomy
 - HGD/DALM
 - LGD* controversial

Slide 3

The Enemy: Colorectal Cancer

The risk of colorectal cancer in IBD is nearly 20 times higher than the general population
Cancer and IBD

- Increased risk of colorectal cancer in UC\(^1,2\)
 - 0.5-1.0% per year after first decade of disease
 - 2% at 10 years, 8% at 20 years, 18% at 30 years
- Risk is equivalent for UC and CD
 - Duration
 - Extent
- Cancers occur earlier in these patients
- Dysplasia in flat mucosa
- Risk not increased in patients with proctitis

\(^1\)Ransohoff. Gastroenterology 1988;94:1089
\(^2\)Eaden et al. Am J Gastro 2000;95:2710

Is the Risk This High?

- 600 patients with extensive UC followed for 5932 person-years at St. Marks in London
- 30 CRCs detected (annual risk: 0.5% or 1/200)
- Cumulative probability of CRC was 2.5% at 20 years, 7.6% at 30 years and 10.8% at 40 years
- Linear regression suggested that CRC risk declined over the course of the study

Cumulative Risk of Colorectal Cancer in UC

Eaden JA. Gut 2001; 48:525-35

Proximal
Distal

COLORECTAL CANCER RISK IN ULCERATIVE AND CROHN’S COLITIS

Risk of GI Cancer in IBD

Bernstein CN. Cancer 2001; 91:854-62
Cancer Risk Factors in IBD

- Extensive disease
 - Higher risk: pancolitis
 - Lower risk: proctosigmoiditis
- Disease duration
- Family history of colorectal cancer
- Primary sclerosing cholangitis
- Histologic Disease activity
 (severity of inflammation)
- Probable risk factors
 - Folate deficiency
 - Poor compliance with medical therapy

Rutter, et al. Gastroenterology, 2004

Cancer Surveillance in Colitis

Inflammation Dysplasia Cancer Death

Intervene screening and surveillance
Intervention to prevent further progression: surgery

Dysplasia in IBD

- Unequivocal neoplastic epithelium confined to the gland in which it arose
- Marker of malignancy risk
- Present in 75-80% (close and distant) of patients with carcinomas
- Any portion of colon (parallels cancer)
 - single, multifocal, diffuse
- Flat or elevated (DALM)
Slide 16

Dysplasia Classification

- Negative for dysplasia
- Indefinite for dysplasia (probably negative, unknown and probably positive)
- Positive for low-grade dysplasia, high-grade dysplasia or invasive cancer
- Pathologists should no longer be grading dysplasia as mild, moderate or severe

Slide 17

Limitations of Using Dysplasia as Endpoint

- Interobserver variation
 - Several studies demonstrated only moderate levels of agreement
 - Agreement better for HGD/Negative than LGD/Indefinite
 - Confirm diagnosis by expert GI pathologist
- Scope when IBD quiescent
- Need for patient compliance with colonoscopy
- Dysplasia may be absent in 25-30% of colectomy specimens in patients with cancer

Slide 18

Interobserver Variation in Diagnosis of Dysplasia

<table>
<thead>
<tr>
<th>Degree of Dysplasia</th>
<th>% Agreement</th>
</tr>
</thead>
<tbody>
<tr>
<td>High Grade</td>
<td>77</td>
</tr>
<tr>
<td>Low Grade</td>
<td>63</td>
</tr>
<tr>
<td>Indefinite</td>
<td>49</td>
</tr>
<tr>
<td>Negative</td>
<td>74</td>
</tr>
</tbody>
</table>

Colonoscopic Surveillance for UC

- Can detect UC cancers at a curable stage for many patients
- Cancer mortality is reduced with surveillance
 - 77% vs 37% 5 year survival
- At initial screening, 3% will have cancer and 11% will have dysplasia

Mortality Benefit from Surveillance in UC

- Lahey Clinic Study 1974-1991, 2050 pts
- 19 cancers in surveillance group
 - Duke’s A (7) B (8) C (4)
 - 5-yr survival 77.2%
- 22 cancers in nonsurveillance group
 - Duke’s A (3) B (6) C (13)
 - 5-yr survival 36.3%

\[\text{P} = 0.026 \]

CRC and UC Surveillance Colonoscopy

- Retrospective
- Case control Study
- UC + CRC
 - 40 patients
- UC no CRC
 - 102 patients

Karlen P. Gut 1998; 42: 711-14
Surveillance in chronic UC

My Guidelines

- Colonoscopic surveillance
 - after 8-10 years of disease in patients with pan colitis
 - after 12-15 years in patients with left sided disease
- Q1-3 years
 - Consider FH, PSC, age, symptoms etc.
- After 20 years, annual colonoscopy
- NNT = 14 to prevent 1 cancer; 40 to prevent 1 death

Suggested Intervals for Surveillance Colonoscopy

- Screening Colonoscopy (at 8-10 yr of disease)
 - Dysplasia:
 - Repeat q 2-3 yrs
 - No Dysplasia
 - Repeat q 1-2 yrs

Note: Patients greater than age 50 need screening for polyps and adjust schedule according to symptoms (bleeding).

Follow dysplasia algorithm.

Colorectal Cancer in Ulcerative Colitis

DYSPLASIA

- Inflammatory Change
- Dysplasia
- Surveillance best during remission
SURVEILLANCE BIOPSY PROTOCOL

SURVEILLANCE FOR DYSPLASIA IN UC
- >32 biopsies are needed to exclude dysplasia with 90% confidence
- 4 quadrant biopsies every 10 cms
- Additional biopsies - suspicious mucosal lesions
- Disease in remission at time of colonoscopy
- Surveillance is not perfect
- Prophylactic colectomy an option

Levin B. ASGE Clinical Update 2000;7:1313-6

SURVEYING SURVEILLANCE:
What are we (not) doing?
- 79% of physicians biopsy 2-4 sites
- 54% biopsy 5-9 sites
- 36% biopsy 10 or more sites
- Confusion about dysplasia, DALM

Dysplasia Associated Lesion Mass (DALM)

"DALM" coined by Blackstone et al. Gastroenterology, 1981;80:366-74

Dysplasia in IBD

Gross Subtypes
- Flat
- Elevated (DALM)
Slide 31

Confirmed Dysplasia in CUC

- Flat
 - low grade*
 - high grade*
 - low/high grade*

- DALM
 - colectomy

*confirmation by 2nd expert pathologist
#controversial, though most (including me!) recommend colectomy

Slide 32

Colectomy for Dysplasia in UC

- Low grade dysplasia → 20% cancer
- High grade dysplasia → 42% cancer
- DALM → 43% cancer
- The finding of dysplasia of any grade should be confirmed by a pathologist with special expertise in gastrointestinal pathology
- **Confirmed dysplasia = colectomy**

Bernstein et al, Lancet 1994;334:71

Slide 33

The fate of low grade dysplasia

- Mt Sinai: 46pts → LGD on chart review
 - 7 cases of CRC
 - 4/17 (23.5%) had unexpected CRC at colectomy
 - 53% progression to advanced neoplasia at 5yr
 - 2 cancers at advanced stage despite surveillance
 - Unifocal LGD same risk as multifocal or recurrent LGD
- **Confirmed LGD = Colectomy**

Ullman, et al., Gastroenterology 2003;125:1311-1319
Slide 34

The fate of low grade dysplasia

![Graph showing progression over time](image)

Ullman T Gastro 2003; 125:1311-19

Slide 35

Dysplasia Surveillance in UC: Recommended Actions

- Indefinite findings: increase surveillance
- Negative findings: survey according to duration and other RF
 - >8 years: every 1-3 years
 - >20 years: every year
- DALM, high grade, low grade: colectomy

Slide 36

Confirmed Dysplasia by 2 expert pathologist = COLECTOMY in UC
Controlled Studies on the Use of Chromoendoscopy in UC

<table>
<thead>
<tr>
<th>Study</th>
<th>Number of patients</th>
<th>Dye</th>
<th>Difference (x-fold)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kiesslich et al. (2003)</td>
<td>165</td>
<td>MB</td>
<td>10 (32 vs 10)</td>
<td>3.07</td>
</tr>
<tr>
<td>Hurlstone et al. (2004)</td>
<td>324</td>
<td>IC and magnification</td>
<td>69 (69 vs 24)</td>
<td>3.81</td>
</tr>
<tr>
<td>Rutter et al. (2004)</td>
<td>100</td>
<td>IC</td>
<td>7 (7 vs 0)</td>
<td>4.50</td>
</tr>
<tr>
<td>Kiesslich et al. (2007)</td>
<td>153</td>
<td>MB and Confocal Endomicroscopy</td>
<td>23 (19 vs 4)</td>
<td>4.75</td>
</tr>
<tr>
<td>Marion et al. (2008)</td>
<td>102</td>
<td>MB</td>
<td>17 (17 vs 9)</td>
<td>5.66</td>
</tr>
</tbody>
</table>

Pit Pattern Classification (Kudo)

The typical crypt architecture of types I-V are indicated (A). (B) Examples of type I (left) and type IV (right) lesions before and after chromoendoscopy.

Chromoendoscopy: Which Dye?

- **Indigo carmine (0.1%-0.4%)**
 - Contrast stain neither reacts or is absorbed by the colonic mucosa
 - Pools in mucosal grooves allowing better definition of small or flat lesions as well as alterations in mucosal architecture
 - Can be washed off the mucosa

- **Methylene blue**
 - Vital dye taken up by colonic mucosa within 1-2 minutes staining noninflamed mucosa but is poorly taken up by dysplastic tissue or inflamed mucosa

- **No published studies comparing indigo carmine to methylene blue in patients with IBD**

Chromoendoscopy in practice

- Single physician experience 2005-8/2012
- 184 scopes; 118 pts, mean age 51.4 years

<table>
<thead>
<tr>
<th>Procedure</th>
<th>Chromo-IC (64 scopes)</th>
<th>WLE (120 scopes)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Duration</td>
<td>38.5 minutes</td>
<td>20.5 minutes</td>
</tr>
<tr>
<td>Biopsies</td>
<td>42.0 bx (13 jars)</td>
<td>33.8 bx (10 jars)</td>
</tr>
<tr>
<td>Polyps</td>
<td>157 polyps (2.45/scope)</td>
<td>87 polyps (0.725/scope)</td>
</tr>
<tr>
<td>Dysplasia</td>
<td>25/64 (39.1%) dys polyps</td>
<td>8/120 (6.9%) dys polyps (p<0.001)</td>
</tr>
</tbody>
</table>

*Flat dysplasia on one random biopsy

Jatsukar N, Reinert S, Resnick M, Shah S

The Future of Endoscopic Imaging in Patients with IBD

Goals

- Increased risk of colon cancer in IBD
- Importance of surveillance technique
- Consider Chromoendoscopy
- Suggested Guidelines (evolving)
- Confirmed dysplasia* = colectomy
- YOU CAN HELP:
 - Is the pt due for colonoscopy
 - # biopsies, careful technique, Chromo
Future

- Chromoendoscopy with only targeted biopsies; longer intervals in between scopes
 - Random biopsies yield is very low
 - Biopsies adds time and cost
- Stool DNA
- Blood tests to detect presence of dysplastic tissue in colon
- Chemoprevention: 5-ASA, Urso, Folic acid
 - Future: ?

Should colectomy be performed for flat dysplasia?

- Grade A: There is high certainty that colectomy for flat HGD treats undiagnosed synchronous cancer and prevents metachronous cancer.
- Grade Insufficient: The current evidence is insufficient to assess the balance of benefits and harms of colectomy for flat LGD.

IBD Patient with Flat Dysplasia

High grade

- Colectomy or Increase Surveillance

Low grade

- Multifocal Colectomy
- Unifocal Colectomy

2021 American Society for Gastrointestinal Endoscopy. All rights reserved.
Slide 46

DALMs (Polypoid or Raised Dysplasia)

Adenoma-like
Endoscopically resectable

Non-adenoma-like
Non-endoscopically resectable

Slide 47

Long term Followup of Polypoid Dysplasia Resected Endoscopically

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>No further polyps</td>
<td>38%</td>
<td>52%</td>
</tr>
<tr>
<td>Additional polyps</td>
<td>58%</td>
<td>48%</td>
</tr>
<tr>
<td>Dysplasia in flat mucosa</td>
<td>4%</td>
<td>0%</td>
</tr>
<tr>
<td>CRC</td>
<td>4%</td>
<td>0%</td>
</tr>
</tbody>
</table>

Slide 48

DALMs (Polypoid or Raised Dysplasia)

Adenoma-like
Endoscopically resectable

Outside colitis
Polyectomy
Regular surveillance

Inside colitis
Polyectomy
Absence of flat dysplasia
? Increase surveillance

Non-Adenoma-like
Non-endoscopically resectable

Colectomy
Slide 49

Polyps in IBD: Pseudopolyp (PP), Adenoma like DLM (ALD) or Non Adenoma Like DLM (NALD)

Slide 50

Endoscopist’s Nightmare

Slide 51

Is there sufficient rationale for performing surveillance colonoscopy in patients with IBD?

Grade B: There is moderate certainty that surveillance colonoscopy results in at least moderate reduction of CRC risk in patients with IBD.

- Despite the lack of randomized controlled trials, surveillance colonoscopy is recommended for patients with IBD at increased risk for developing CRC.
- Patients with extensive UC or CD of the colon are most likely to benefit from surveillance.

Surveillance Colonoscopy

- All patients should undergo a screening colonoscopy a maximum of 8 years after onset of symptoms
- Regardless of extent of disease at diagnosis
- Multiple biopsies to assess microscopic extent of inflammation
- Ulcerative proctitis or proctosigmoiditis are not considered at increased risk for IBD-related CRC
- Manage on the basis of average-risk recommendations
- Patients with extensive or left-sided colitis should begin surveillance within 1 to 2 years after the initial screening colonoscopy

Surveillance Colonoscopy

- The optimal surveillance interval has not been clearly defined
- After 2 negative examinations survey every 1 to 3 years
- Representative biopsy specimens from each anatomic section of the colon should be obtained
- Minimum of 33 biopsy specimens to be taken in pancolitis patients
- Chromoendoscopy with targeted biopsies is recommended as an alternative to random biopsies for endoscopists who have expertise with this technique
- Increased sensitivity for detecting dysplasia

Surveillance Colonoscopy

- Patient with PSC
 - Survey at time of diagnosis and then yearly
 - Ideally, surveillance colonoscopy should be performed when the colonic disease is in remission
 - More frequent surveillance examinations:
 - History of CRC in first-degree relatives
 - Ongoing active endoscopic or histologic inflammation
 - Anatomic abnormalities such as a foreshortened colon, stricture
 - Multiple inflammatory pseudopolyps
 - Same recommendations for patients with Crohn’s colitis who have disease involving at least one third of the length of the colon
